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Abstract. This work focuses on automated incremental 
development of biological networks. The Bio3graph approach to 
information extraction from biological literature is extended with 
new features which allow for periodical updates of network 
structures using newly published scientific literature. The 
incremental approach is demonstrated on two use cases. First, a 
simple plant defence network with 37 components and 49 
relations created manually by merging three existing structural 
models is extended in two incremental steps, yielding the final 
model with 183 relations. Second, a complex published network 
of defence response in Arabidopsis thaliana, containing 175 
nodes and 524 relations, is incrementally updated with 
information extracted from recently published articles resulting in 
an enhanced network with 628 links. The results show that using 
the demonstrated incremental approach it is possible to 
automatically recognise new knowledge about the selected 
biological relations published in recent literature. The newly 
implemented Bio3graph extension offers an effective way of 
merging and visually representing the initial networks and the 
networks generated from texts thus enabling fast discovery of 
relations which can potentially enhance the existing models. 

 

Keywords: biological literature, biological networks, information 
extraction, plant defence 
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1 Introduction  

 
At any level of detail, biological interactions can be modelled as networks [1]. 
For example, nodes can represent very different biological units ranging from 
atoms to individual organisms and the relations may describe atomic 
interactions in protein structure, molecular interactions or even species 
interactions. Network structures enable formal analysis of the modelled 
systems, mechanisms, and relations by using algorithms and methods from 
graph theory and other branches of discrete mathematics. The information 
obtained from such networks can be used in different ways to increase the 
understanding of biological systems. Several approaches have been 
recognised by Alm et al. [1]. For example, network structure can be used to 
propose hypotheses how the modelled systems are organised. Existing 
hypotheses can be tested and confirmed or rejected on the basis of the 
network data. Finally, existing open questions can be reformulated from a 
network perspective, for example, the role of the network structure in the 
evolutionary process and the role of evolution in shaping the network structure 
[1]. Studies in systems biology and graph theory have revealed that widely 
studied complex networks such as social networks, scientific co-authorships 
and the internet in fact share many features with certain biological networks, 
for example, the power-law node degree distribution, hierarchical modularity 
and small-world properties [1] (the architecture and physical properties of 
biological networks and networks in general are discussed in length by 
Wuchty et al. [2], Alm et al. [1] and Zhu et al. [3]). However, as discussed by 
Lima-Mendez and van Helden [4], the structural properties of biological 
networks are too often inferred from visual inspection only and no statistical 
tests are performed in order to evaluate the hypotheses. 

The structure of a biological network can be developed manually by the 
expert using a priori knowledge about entities and the relations between 
them. Up to date, several biological networks have been developed manually, 
such as the macrophage activation model developed by [5, 6], or terpenoid 
biosynthesis pathway [7]. On the other hand, biological networks can also be 
constructed automatically using computer methods to extract information from 
databases or textual sources. As the majority of curated human biological 
knowledge is produced in the form of scientific text, information extraction 
from the literature by means of natural language processing techniques is an 

efficient way to automated construction and enhancement of biological 
networks. The construction of biological networks from the literature is 
recognised as an important task especially in the natural language processing 
community and several systems for the extraction of network structures from 
scientific texts have been developed (see e.g., the numerous developed tools 
of the arising bioNLP community

1
). Li et al. [8] and Skusa et al. [9] provide 

state-of-the-art reviews of available systems for biological network extraction 
from scientific literature and discuss aspects, phases and challenges of the 
topic. Several NLP tools enable the extraction of interactions between the 
components (e.g., see the review by Ananiadou et al. [10]). 

The most common NLP approaches can be grouped into three categories 
[11]: machine-learning approaches, rule-based approaches, and co-
occurrence-based approaches. A wide range of machine learning techniques 
is used for relations extraction in systems biology, like the Naive Bayes 
classifier [12], Support Vector Machines [13], clustering [14], etc. Examples of 
rule-based systems include GeneWays [15], Chilibot [16], PLAN2L [17] and 

                                                           
1
 http://www.bionlp.org/ 
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the approach proposed by Ono et al. [18]. Methods that combine rule-based 
and co-occurrence-based approaches are also used in systems biology such 
as Suiseki developed by [19] and upgraded in the BioRAT system by [20]. 
Most systems extract the information only from abstracts of the PubMed 
database; an exception is the BioRAT system which process full texts [20]. 
Most of the rule-based approaches enable the users to query the extracted 
information, however, these systems have also certain limitations. For 
example, Chilibot [16] is a web-based system which enables the search for 
relations by querying a certain number of entities, but it supports only a limited 
number of entities in the query without providing the complete network 
structure construction. Suiseki [19] extract information only from abstracts. 
GeneWays [15] allows for the extraction, analysis, visualisation and 
integration of molecular pathway data but the system is not publicly available. 

The focus of this work is on biological networks which model defence 
response in plants. Due to the complexity of plant defence response, the 
developed models represent mostly subsets of the whole mechanism. There 
were several attempts of modelling the defence mechanism of the model plant 
Arabidopsis thaliana. One of the first attempts to model the subset of the plant 
defence by constructing the Boolean network was performed by Genoud et al. 
[21]. Devoto et al. [22] presented a similar approach to modelling one pathway 
of the plant defence using Boolean formalism. Su et al. [23] constructed five 
gene logic networks for Arabidopsis under the normal condition and four 
external stimuli (short-day, long-day, bacterium and salt). In the study of 
Miljkovic et al. [24] a complex network structure of defence response in 
Arabidopsis thaliana was developed. 

The primary goal of the presented work is to extend the publicly available 
biological information extraction and network construction tool Bio3graph [24] 
to support incremental development of biological networks. The Bio3graph 
method is extended with functions which enable incremental development by 
network merging, detection of transitive relations, colour coding and network 
visualisation to present the newly extracted knowledge. We apply text 
processing components to two plant defence networks to show the potential 
of incremental knowledge upgrading for the mechanisms where kinetics data 
are sparse. The first network, which we refer to as the “simple network” was 
constructed from three small structural models published in the literature [25–
27]. The second one, which we refer to as the “complex network” is a recently 
published complex plant defence network [24]. Throughout the paper both 
networks play the role of the “Initial network” which is extended with a “Triplet 
network” that is extracted automatically from the literature (see Fig. 1 where 
the scheme of the methodology is presented). 

The rest of the paper is structured as follows. Section 2 outlines the 
procedures for incremental development of biological networks (literature 
retrieval, relation extraction in the form of (component1, reaction, 
component2) triplets and network operations) and describes the 
implementation. In Section 3 the results of incremental revisions of both plant 
defence networks are presented. The simple network was enhanced in two 
incremental steps whereas the second (which was only recently published) 
was updated once with the latest available publications. The updates of all 
networks are presented and discussed by means of graphical 
representations. The paper concludes by summarising the results of the 
experiments and suggesting improvements and directions for further work. 
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2 Materials and methods  

 
This section presents the methods for literature retrieval and pre-processing, 

extraction of triplets from the texts, construction of the network structure from 

triplets and incremental updating of the network structure by merging, colour 

coding, and detection of transitive relations. The implementation of the 

presented approach is also described. 
 
 
2.1 Extraction of triplets and incremental revision of networks  
 
The presented work on incremental revision and development of biological 

models is based on the existing Bio3graph [24] approach which allows for 

automated extraction of biological relations in the form of triplets from the 

literature. In the following we summarise the most important Bio3graph 

concepts and the pro-posed extensions which allow for incremental 

development of biological networks (see Fig. 1 for schematic overview of the 

methodology).  
The Bio3graph approach is essentially a workflow of processing 

components which extract triplets of the form (component1, reaction, 

component2) using natural language processing tools. The workflow consists 

of the following steps: (1) literature retrieval, (2) text pre-processing, (3) 

sentence splitting, (4) tokenization, part-of-speech (POS) tagging and 

chunking, (5) triplet extraction and filtering, and (6) network construction and 

visualisation. In addition, the incremental extension of Bio3graph implements 

(7) network merging, (8) detection and reporting of transitive relations and (9) 

colour reset. We define the inputs to the incremental extension as follows (see 

Fig. 1). The existing network which is the subject of incremental enhancement 

is called the “Initial network” and the result of Bio3graph is called the “Triplet 

network”. The incremental extension of Bio3graph produces two outputs: 

“Incremented network”, a result of merging the Initial and the Triplet network, 

and list of transitive relations. In the following we discuss all steps of the 

approach in detail. 

 
 
Fig. 1: Scheme of the methodology for incremental construction of biological 
networks using information extraction from literature. 
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Literature retrieval. The collection of relevant scientific publications about 
various aspects of the selected case study topic (Arabidopsis thaliana 
defence response) was obtained from PubMed Central (PMC), a freely 
accessible on-line archive of biomedical and life sciences literature, which is 
developed and managed by National Library of Medicine’s National Center for 
Biotechnology Information (NCBI). As of May 2013, PMC database hosts 
more than 2.7 mil-lion articles for which full text is available, either as 
HTML/XML or PDF or both. NCBI also provides the Entrez Programming 
Utilities (E-utilities), which enable programmatic access to the Entrez query 
and database system covering a variety of biomedical data, including 
nucleotide and protein sequences, gene records, three-dimensional molecular 
structures, and the biomedical literature [28]. The E-utilities are accessible via 
the HTTP protocol using GET and POST commands, and return the response 
in a structured XML document. 

PMC also provides the PMC Open Access Subset (OA), a growing 
collection of publications which are made available under a Creative 
Commons or similar license. The OA subset is a valuable source of reviewed 
scientific publications which are readily available for data mining, text mining, 
and information extraction using automated processing pipelines. To facilitate 
computer processing, the Open Archives Initiative service and the FTP 
service allow downloading full-text XML as well as images, PDF, and 
supplementary data files for all articles in the OA subset. 

To obtain sets of documents to increment networks in both use cases we 
have used the PMC Advanced Search Builder to construct the query which 
should cover as much literature as possible regarding the defence response 
signalling pathways in Arabidopsis thaliana. The query is as follows: 

 
"arabidopsis thaliana"[All Fields] AND ( 

"defence"[All Fields] OR  
"defense"[All Fields] OR  
"ethylene"[All Fields] OR  
"jasmonate"[All Fields] OR 

"jasmonic acid"[All Fields] OR 
"salicylate"[All Fields] OR "salicylic 

acid"[All Fields] OR "pathogen"[All 
Fields] OR "virus"[All Fields] 

 

) 
 

The query was used for both use cases only with the following differences. 
For the first use case with the simple model all publications regardless of the 
publication date were collected (the query was performed in May 2012). On 
the other hand, to increment the complex model in the second use case the 
earliest publication date was set to the latest date of any publication used by 
the authors of the model [24] (April 5th, 2011). Also, in the simple use case 
the keyword “virus” was excluded from the query and the source document 
set was not limited to the PMC OA subset in order to collect as much 
knowledge as possible (the most important non-OA publications were 
considered and extracted manually as PMC does not allow automated 
downloading of any publications outside of the OA subset). 

For the simple network the query yielded 10,299 documents out of which 
some were available only as PDF and were left out. In order to time-stamp 
them we have collected pub-date tags and extracted the earliest available 
date (which in most cases corresponds to the classic publication date or the 
electronic publication). The final corpus, containing 9,157 documents, was 
divided in two datasets which were used in two incremental steps of the triplet 
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extraction by Bio3graph. In the case of the complex network, the query 
resulted in 2,988 full-text publications which were also subject to automated 
triplet extraction leading to an incremental enhancement of a complex, 
recently published network. 

The exact value of precision of our queries cannot be computed as the 
total number documents relevant to the query as well the number of relevant 
returned documents is not known. However, it is possible to compute an 
estimate using the following assumptions. First, we assume that our query 
covers all publications indexed by PubMed Central that are related to defence 
response in Arabidopsis thaliana. This is a reasonable assumption as the 
query is very general and it is quite impossible for a scientific publication to 
discuss the topic not using any of the words specified in the query. On the 
other hand, the query also covers several documents which contain query 
words but are not related to the topic. Their number can only be determined 
by manual evaluation which is impractical for non-trivial corpora. However, we 
can estimate the lower bound by counting the documents where triplet 
extraction returned some result (true positive or false positive) as this 
suggests that there is a significant matching between the topic vocabulary and 
the document. 

In the case of the simple network, triplets were found in 636 documents 
which yields an estimate 636/9157 ≈ 6.9% for precision. In the case of the 
complex network, the estimate is 232/2988 ≈ 7.8%. When considering these 
values it has to be taken into account that PubMed central only performs 
keyword search and not content search. Consequently, many irrelevant 
publications are returned which do not yield any triplets while applying 
Bio3graph. 

 
Text pre-processing. The goal of the pre-processing step is to perform 
numerous small corrections in raw text. For example, “H 2 O 2” is replaced by 
“H2O2”, “SA-treatment” is replaced by “SA treatment’, and citation artefacts 
such as “et al.” or “et al;” are converted into “ETAL.” in order to avoid 
mismatching with the abbreviation for ethylene (et). 

 
Sentence splitting. Sentence splitting is the process of breaking 
homogenous text into sentences. Bio3graph employs Punkt sentence splitter 
[29], the NLTK’s recommended sentence tokenizer [30]. 

 
Tokenization, POS tagging and chunking. Tokenization is the process of 
breaking the input text into words, symbols and other meaningful elements 
called tokens. Tokenization is followed by POS tagging which assigns POS 
tags to words, i.e., it labels words as nouns, verbs, adjectives, etc. Finally, 
chunking is the process of segmenting and labelling multi-token sequences 
such as noun phrases (NP) or verb phrases (VP). 

In Bio3graph all three functions are performed by the GENIA tagger [31] 
which offers POS tagging, chunking and named entity recognition from 
English texts. For example, a tree representation of the chunk structure of a 
simple statement is shown in Fig. 2. 
 
 
 
 
 
 
 
Fig. 2: A tree representation of the results of POS tagging and chunking of the 
sentence “SA appears to enhance EDS1 expression.” using the GENIA 
tagger. 
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Triplet extraction and filtering. In this step of the Bio3graph workflow the 
aim is to extract triplets of the form (component1, reaction, component2). We 
assume that the grammatical structure of the triplets is such that the 
component1 and component2 are part of the NPs while the reaction is a part 
of the VP. The triplet extraction procedure performs matching of (NP, VP, NP) 
patterns to a manually crafted vocabulary of components and reactions while 
also satisfying a number of rules. 

We have composed two different vocabularies for the two use cases. 
Essentially, both share the reactions vocabulary but use different component 
vocabularies. The reactions vocabulary specifies various words (verbs) and 
phrases which can represent activation, binding and inhibition but also 
contains passive forms. Altogether, more than 150 different reaction terms are 
recognised without counting their numerous forms and synonyms (see 
Supporting Information 4 in [24]). Component vocabularies of both networks 
contain also numerous synonyms and short names (e.g., SA, Salicylate, 2-
Hydroxybenzoic acid and o-Hydroxybenzoic acid are synonyms for salicylic 
acid). 

A number of simple rules limit the number of spurious triplet patterns (they 
are part of the program code in the main triplet extraction loop). First, the rules 
do not allow for patterns where the NPs are separated by more than one VP 
(on the other hand, they allow soft matching of multi-word reaction terms such 
that the VP and reaction phrase must overlap in at least one word). Second, 
hypothetical triplets are filtered out. This is accomplished by searching for 
words such as “possibly”, “to determine”, etc. in the sentence, and auxiliary 
verbs like “may”, “can” and “would” in the VP. Third, mutant-related triplets are 
also discarded by recognising terms such as “mutant” and “line” in the NP. 
Fourth, triplets which are too general and refer to the whole pathway instead 
of some specific component are also not allowed. Finally, triplets where the 
first and the second component are the same, and triplets with a negation in 
the VPs are filtered out. 
 
Network construction and visualisation. In the final step of the Bio3graph 
workflow, the extracted set of triplets is transformed into a network structure (a 
directed multigraph). Each triplet yields a set of nodes and an arc that points 
from the first component to the second component of the triplet. Additional in-
formation can be also assigned to nodes and arc, such as the sentence from 
which the triplet was extracted, the id of the source document, and the time 
related to the source document (e.g., publication date). The time attribute 
adds a temporal quality to the network structure, and allows for the analysis of 
development of the network structure through time. 
 
Network merging. In order to allow for incremental updates of an existing 
model using Bio3graph (or any other biological network construction method) 
the existing model and newly extracted network have to be merged. The 
merging process produces a union of the networks and applies colour coding 
to relations in order to distinguish between known, new, and duplicate 
relations. 

All biological networks discussed in this work (and biological networks in 
general) are directed edge-labelled graphs with several types of relations. 
Therefore, the data structure used for merging must support the most general 
type of graphs which is called a multigraph. A multigraph supports duplicate 
relations, relations of different types and cycles. 

The merging procedure merges the input networks into a single network 
using the following colour coding: existing relations originating from the old 
network are coloured in black, newly discovered relations originating from the 
new net-work are coloured in red while the re-discovered existing relations 
originating from the new network are coloured in green. Other existing 
information about nodes and relations is also preserved during merging. 
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Discovery of transitive relations. Automated extraction of biological 
relations with Bio3graph can yield relations which may not appear in the 
existing model (the subject of incremental revision) but their knowledge is 
already implicitly contained in the model. Such relations, which are known as 
transitive relations in graph theory, represent a shortcut of a chain of 
biological relations. For example, the new relation A activates C can be 
inferred given the chain A activates B activates C. However, while such 
assumption is valid in theory, biology experts consider such relations in the 
broader context and certain bio-logical conditions. Some relations may be 
safely removed, however, this action should be left to biology expert to 
perform after a thorough manual inspection of transitive relations and their 
context in the network and literature. There-fore, our approach provides 
automated detection of transitive relations, their inspection, colouring and 
removal as separate functions which can be used on demand. 

In general, transitive relations can be removed by computing the transitive 
reduction of the directed network. Transitive reduction yields a new network 
on the same set of nodes with as few edges as possible to maintain the same 
reachability relation. For a finite, directed acyclic network the transitive 
reduction is a unique subnetwork which is also the minimum equivalent 
network. However, the transitive reduction of directed networks with cycles is 
not unique and is not necessarily a subnetwork. This means that the transitive 
reduction of general biological networks – which typically contain cycles – is 
not applicable as it may produce several equivalent networks and also 
introduce new relations. 

For this reason, we have developed a procedure which does not exhibit 
the mentioned limitations. Given an existing network and a new network, the 
procedure evaluates all relations in the new network. For each relation in the 
new network the procedure tries to find a path in the existing network. If such 
a path exists, the new relation is transitive. It should be noted that we do not 
make any assumptions about the existing network and that each type of 
relation is considered separately, i.e., the path must contain only relations of 
the same type. 

Fig. 3 shows an example of a transitive relation in a simple graph. The 
transitive relation v Activates x is shown in grey. On the other hand, the 
relation v Activates z is not transitive as no alternative path consisting only of 
relations of the same type exists between v and z. 

 

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 3: An example of a transitive relation in a simple graph. The relation v 
Activates x, shown in grey, is transitive. The relation between v and z is not 
transitive as the path between v and z contains relations of different types. 
 
 
Colour reset. The incremental revision of the Initial network with a Triplet 

network extracted from the literature can be used again in the next iteration 

(see Fig. 1). The only requirement is that the colours of relations are reset to 

the default colour (black) so that merging and colour coding can be performed 
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correctly using a next Triplet network obtained by Bio3graph from a new set of 

documents. 

 
2.2 Implementation  
 
Our implementation of incremental development of biological networks is built 
as an extension of Bio3graph. Therefore, we only discuss the implementation 
of new components and the complete integrated solution as a scientific 
workflow as the implementation of Bio3graph is presented in length in [24]. 
 
Literature retrieval. We have implemented literature retrieval in the Python 
programming language using the ESearch and EFetch functions provided by 
PMC E-utilities. The implementation accepts the query constructed manually 
or by using the Advanced Search Builder and invokes ESearch to obtain the 
identifiers of the corresponding articles. The identifiers are then matched 
against the downloaded archives of the PMC OA subset and full-text XML 
files are extracted. Our XML parser, which is used to transform the XML files 
into plain text data, is set to ignore the following XML tags which do not 
contain relevant textual data and may contain unwanted special characters or 
words with excessive length (they can cause problems in some language 
processing components): xref, table, graphic, ext-link, media, and inline-
formula. 
 
Network merging. The network merging component was implemented using 
the NetworkX

2
 Python library which can be natively integrated into the 

Bio3graph workflow in Orange4WS [32]. To maintain the compatibility with the 
Bio3graph network representation in Biomine’s graph format we have also 
implemented a bidirectional transformation between the Biomine’s [33] 
network format and NetworkX data structures which preserves all existing 
information concerning nodes and relations. For example, if the positions of 
the nodes in the visualisation canvas are available they will be preserved 

during merge which is essential for the efficient visual comparison of the 
networks. 

 
Discovery of transitive relations. The discovery of transitive relations also 
relies on the NetworkX library. It is implemented as a separate component 
which accepts the existing and the new network and returns a list of transitive 
relations. In this way, the relations can be reported to the user, inspected, 
marked with a different colour in a merged network to aid the visual evaluation 
of the network or even removed from the network.  

The procedure, described in Section 2, is implemented using the path 
discovery procedures available in the NetworkX library. The search for an 
existing path in the existing network is performed by generic function has 
path(G, source, target) which is essentially instantiated to the bidirectional 
shortest path search which executes a breadth-first search from both the 
source and the target and returns a list of nodes in the path or an empty list if 
such path does not exist. 
 
Colour reset. Reset of the colours of relations works by modifying the 
attributes of the relations which are stored in the NetworkX MultiDiGraph data 
structure. The implemented bidirectional transformation from this data 
structure to the Biomine’s format can be used to export the structure and 
properties of the reset network into a portable text file. 
 
The workflow. The proposed extension of Bio3graph was implemented as a 
scientific workflow in the same service-oriented data mining environment 

                                                           
2 http://networkx.github.io 
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Orange4WS [32] where Bio3graph was developed and implemented. By 
utilising Orange4WS the following benefits were achieved. First, incremental 
revision and development is natively integrated with Bio3graph. Second, 
workflow-based implementation ensures repeatability of experiments and 
makes the modifications and extensions of the developed workflow easy. 
Finally, the workflow-based solution is shareable and can be used anywhere 
where Orange4WS is available. 

The implementation of the incremental network development approach in 
the Orange4WS environment is shown in Fig. 4. The first part of the workflow 
implements Bio3graph (loading of documents, pre-processing and parsing, 
loading of vocabularies, triplet extraction, and network construction) while the 
second part implements incremental development (network merging, colour 
coding, detection of transitive relations, and visualisation of incrementally 
constructed networks). It should be noted, however, that only one incremental 
step is composed in the workflow. Additional steps can be performed by 
repeating the two parts of the workflow: triplet extraction with Bio3graph 
followed by incremental revision. 

The workflow works as follows. First, the dictionary has to be constructed 
as it is needed for the triplet extraction algorithm. This is accomplished by 
loading the dictionary files which are passed to the web service which 
constructs the dictionary structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: A screenshot of the workflow implementing the proposed incremental 

revision of biological networks. The first part of the workflow, which ends with 

the “visualise triplet network” component, implements the Bio3graph approach 

for automated triplet network extraction from biological literature while the 

second part implements its incremental extension. The inputs to the second 

part are the initial network, loaded from a file, and the triplet network, obtained 

from a new set of documents. 
 

 
The parallel branch of the workflow is used to prepare the data. A collection of 
text files is sent to the Emitor component which simulates the for-loop by 
outputting the elements of the input list one by one. Each emitted document is 
passed to the web service which creates the document data structure. Each 
instance of this data structure is then forwarded to the sentence splitting 
component which is followed by POS tagging with the GENIA tagger. The 
document, tokenised and parsed, is sent to the triplet extraction web service 
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which requires also the dictionary. The extracted triplets (if any) are subjected 
to the normalisation process where the names of the involved components 
and the reaction are replaced by the corresponding base names (for example, 
“influence accumulation” is replaced by “activate” and “SA” is substituted for 
“o-Hydroxybenzoic acid”). The extracted triplets from all documents are 
collected by the Collector component which closes the emulated for-loop. The 
Bio3graph part of the workflow concludes with the construction of a network 
from triplets, to which we refer as a Triplet network, and its visualisation. 

The second part of the workflow, which performs incremental revision of 
network starts by loading an Initial network from a file which will be the subject 
of incremental enhancement. This model and the Triplet network are sent to 
the component which discovers and reports transitive relations. In parallel, the 
networks are merged into an Incremented network which is colour coded 
marking differently the relations that belong solely to the Initial network, the 
ones in the networks’ intersection and the new ones. The discovered 
transitive relations are coloured and reported to the user. Finally, the 
Incremented network is visualised and saved. In the very last step of the 
workflow the colours of relations in the Incremented network are reset to black 
which makes the network ready for the next incremental revision which can be 
performed by providing a new set of documents and repeating the execution 
of the entire workflow. 

 

3 Results and discussion  
 
This section presents the results of two experiments in which two different 
biological networks available in the literature were incrementally extended. 
The first experiment is performed on a simple model which is a subset of the 
plant defence mechanism while the second experiment extends a recently 
published complex plant defence model structure. 

 
3.1 Simple plant defence network  
 
The Initial network in this experiment was constructed manually from the 
published figures (structural models) in scientific publications [25–27]. It was 
expanded in two incremental steps using Bio3graph and its incremental 
extension on a time-labelled collection of documents. 
 
The Initial network. We have manually constructed the Initial network from 
structural models published in the scientific literature. Three schemata 
describing the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) 
pathways [25– 27] were selected and transformed into a directed network with 
multiple relations (see Figs. 5, 6 and 7). To obtain the Initial network all three 
were merged into a single network which contains 37 nodes (biological 
components) and 49 links. The merged network is shown in Fig. 8.A. 

Among all the represented components, SA, JA and ET are the most 
crucial for plant defence. The types of relations between the nodes are 
activation (abbreviated as A) and inhibition (abbreviated as I). The nature of 
interactions from the schemata was easily recognisable, and the 
transformation was accomplished with respect to these types. Too general 
components such as lipid, lesion, pathogen, etc. were not implemented in the 
Initial network. On the other hand, to prevent the loss of connections between 
components we have added several reaction products as nodes. 
 
The Triplet network. Triplet extraction with Bio3graph requires a predefined 
vocabulary of components and reactions. We have developed the component 
vocabulary from the list of the Initial network nodes that represent biological 
components. Small compounds and proteins were considered. In addition, we 
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have acquired the list of component synonyms from TAIR [34] and iHOP [35] 
sources. The vocabulary of reactions with reaction synonyms was used from 
Supporting Information S4 in [24]). Besides the activation and inhibition 
reaction types that exist in the Initial network, we have also taken into account 
the additional binding (abbreviated as B) reaction type. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Transformation of the salicylic acid model available in literature into a 
directed network with labelled edges. The model originates from the study of 
Shah [27].  
 

The collection of full-text documents for triplet extraction with Bio3graph 
was divided into two sets according to the defined time point. We used the 
time point of November 2001, which is the earliest publication date of the 
three observed publications [25–27]. The first set of documents (published 
before November 2001) contains 1,714 publications while the second one 
contains 8,493 publications (published after November 2001). Using the two 
sets of documents two sets of triplets were obtained with the Bio3graph 
method. We refer to the first set as triplets before the time point and to the 
second set as the triplets after the time point.  

Some of the extracted triplets appear in several sentences but we count 
only the number of unique triplets. We introduce the term correct triplet in the 
following way: if the triplet is a true positive (TP) in at least one sentence of 
the whole text corpus, it is considered to be a correct triplet. The extracted 
triplets were inspected manually and classified as correct or false positives 
(FP). The initial evaluation of Bio3graph [24] on an annotated corpus yielded 
the average precision and recall of 42.6% and 62.3%, which is comparable 
with other full-text extraction systems, e.g., BioRAT [20]. In the presented 
simple use case, Bio3graph achieved the precision of 47.3% for the first time 
point and 36.4% for the second time point. An average precision for the whole 
text corpus of the simple use case is consequently 41.8% confirming 
consistence with 42.6% precision of the published Bio3graph tool [24]. 

 
 
 
 
 
 
 
 
 
 
Fig. 6: Transformation of the crosstalk between salicylic acid, jasmonic acid 
and ethylene pathways available in literature into a directed network with 
labelled edges. The model originates from the study of Turner et al. [26]. 
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The summary of triplet extraction from documents before and after the 

time point is presented in Table 1. The Triplet network for the first incremental 

step is configured from the set of correct triplets before time point (Fig. 8.B) 

while the Triplet network for the second incremental improvement consists of 

the correct triplets after the time point. 

 

Table 1: The summary of triplet extraction from documents before and after 
the time point for the simple plant defence network. 
 

Reaction types Triplets before time point Triplets after time point 

       

 Total Correct FP Total Correct FP 

       

Activation 52 26 26 231 92 139 
       

Inhibition 19 7 12 157 43 114 
       

Binding 3 2 1 30 17 13 
       

All reactions 74 35 39 418 152 266 
       
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Transformation of the ethylene model from literature into a directed 
network with labelled edges. The model originates from the work of Gonzalez-
Garcia et al. [25]. 
 
 
First incremental step. The first incremental improvement of the Initial net-

work is performed with the Triplet network consisting of correct triplets before 

time point of November 2001. The result of this enhancement is the 

Incremented network with 37 nodes and 78 relations shown in Fig. 8.C. 

Green, red and pink arcs represent the correct triplets discovered by 

Bio3graph from the biomedical texts already available at the time point, while 

the black arcs are the relations present in the Initial network. The summary of 

relation types in the network is shown in Table 2.  

In the Incremented network in Fig. 8.C the green arcs represent the 

intersection between the Initial and the Triplet network. The red and pink arcs 

represent the newly discovered relations not present in the Initial network (the 

pink colour denotes transitive relations). The Initial network, however, can 

contain transitive relations but they do not interfere with our transitive relation 

discovery procedure as described in Section 2.1 as such relations are only 

searched for in the new Triplet network. The knowledge in this network which 

is most interesting for a domain expert is represented by red and pink arcs 

(newly discovered biological relations from the literature).  
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Fig. 8: The enhancement of the Initial network (A) with the correct triplets 

obtained from documents published before the time point (B). The left side 

represents the input networks for the incremental extension of Bio3graph 

while the right side represent the output networks after two incremental steps. 

A) The Initial network created by merging the manually constructed three 

graphs from the literature shown in Figs. 5, 6 and 7. B) The Triplet network 

constructed from the correct triplets extracted with Bio3graph. C) The first 

Incremented network obtained by merging the Initial and the Triplet network. 

The relations present only in the Initial network are coloured in black while the 

relations present also in the Triplet are coloured in green, red or pink. 

Relations present in both Initial network and triplet network are coloured in 

green, newly discovered relations are coloured in red while the transitive 

relations are coloured in pink. D) The final Incremented network obtained after 

two incremental steps with Bio3graph. The new relations from the second set 

of correct triplets are shown in red. 
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Table 2: The summary of relations of the Incremented network shown in Fig. 

8.C. The initial links originate only from the Initial network, while the 

intersection and new links originate from the Triplet network. The intersection 
links are the common relations of the Initial and the Triplet network. The most 

interesting are the new links, which represent exclusively new relations 

discovered by the Bio3graph tool. 
 

Reaction types Initial links Intersection links New links 
    

Activation 32 6 20 
    

Inhibition 11 0 7 
    

Binding 0 0 2 
    

All reactions 43 6 29 
    

 

 
Second incremental step. The second step incremental step is performed in 
an analogue way as the first. The input networks for the incremental extension 
of Bio3graph are as follows. The Initial network is the Incremented network 
shown in Fig. 8.C, but all of its relations are now marked as known (all arc are 
reset to the initial black colour). The Triplet network is constructed from the 
set of correct triplets after the time point of November 2001.  

The result of merging of the two input networks is the Incremented network 
with 37 nodes and 183 relations shown in Fig. 8.D. The relations are summarised 

in Table 3. The final result of the first experiment is the Incremented network 
shown in Fig. 8.D. 
 
 
Table 3: The summary of relations of the Incremented network shown in Fig. 

8.D. The initial links originate only from the Initial network, while the 

intersection and new links originate from the Triplet network. The intersection 

links are the common relations of the Initial and the Triplet network. The new 

links represent exclusively new relations discovered by the Bio3graph tool. 
 

Reaction types Initial links Intersection links New links 

    

Activation 22 36 56 
    

Inhibition 9 9 34 
    

Binding 0 2 15 
    

All reactions 31 47 105 
    

 

 

The starting network, constructed from the three schemata describing the 
SA, JA and ET pathways initially contained 49 relations. Using Bio3graph in 
the course of two incremental steps we have obtained 47 relations in the 
intersection (shown as green in Fig. 8.D). This shows that using Bio3graph as 
a starting point followed by incremental updates as new publications appear it 
is possible to confirm existing information but also propose new candidates 
(relations) for expert analysis. New candidates (shown as red arcs in Fig. 8.D) 
have the potential to generate new hypothesis in biological experiments 
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where the functionality of the link is tested. 
 
Analysis of the structure of incrementally extended networks 
 
Two steps of incremental extension of the simple plant defence network have 
also an impact on the network structure from a theoretical perspective. While 
we discussed the importance of newly discovered relations from a biological 
perspective in the previous paragraphs, the focus is now on the 
consequences of incremental evolvement from a graph-theoretical 
perspective. 

As shown in Figure 9, incremental extensions using triplets found in text 
have an interesting impact on degree distribution. The distributions of the 
Initial net-work and its first increment resemble the power-law distribution. 
Although our statistical evaluation does not confirm the power-law shape (we 
have performed a goodness-of-fit test as described by Khanin and Wit [36] 
and obtained p-values of 0.0566 and 0.0 against the power-law hypothesis), 
the distributions are notably different from that of the second increment. The 
second increment created an almost uniform distribution for low-degree nodes 
while introducing few high degree nodes. As expected, these high degree 
nodes are the well-studied components of plant defence response, e.g., 
ethylene, salicylic acid, jasmonic acid, etc. 

If similar nodes in a network tend to connect, the network is said to be 
assortative [37] (typically, we are interested in assortativity with respect to 
node degrees). It has been discussed by Johnson et. al [37] that real 
networks (including biological networks but excluding social networks) tend to 
display a certain degree of dissortativity. We have measured the degree 
assortativity coefficient of all three networks. The Initial network as well as the 

second increment exhibit dissortativity with coefficients −0.11 and −0.13 while 
the first increment appears to be slightly assortative (0.10). A visual 
observation of the first increment reveals that there is still a periphery of 
nodes which are interconnected with a small number of links while the nodes 
with many connections are gathered in a cluster. However, in the second 
increment the periphery is gone and the cluster has many outbound links. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: Degree distribution of the Initial network and its two increments for the 
simple plant defence network use case. 
 
 
3.2 Complex plant defence network  
 
To explore the potential of incrementally extending an existing, validated 
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model using automated triplet extraction from literature we have selected a 
complex network structure to complement the small-scale experiment. 

In the second experiment the Initial network was a complex plant defence 
network published in the study by Miljkovic et al. [24]. It contains in total 175 
nodes and 524 relations. Since we did not introduce new components into the 
network, the vocabulary of components for the Bio3graph tool remained the 
same (Supporting Information S3 in [24]). Also, the vocabulary of reactions 
was the same as in the first experiment (also available as Supporting 
Information S4 in [24]). 

The network, published as Supporting Information S10 in [24], was used 
as the Initial network and all arcs were reset to black colour. The Triplet 
network was constructed from the correct triplets extracted with Bio3graph 
from the set of 2,988 publications which were published after the latest 
publication used by the authors of [24] in the construction of the complex plant 
defence network. Manual validation of 399 unique triplets resulted in a set of 
156 correct triplets which gives the precision of 39.1% which is close to the 
42.6% precision of the published Bio3graph tool [24]. The Initial and the 
Triplet network were merged into the Incremented network (the summary of 
the relations is shown in Table 4). 

We have analysed some basic properties of the incremented complex 
plant defence network. Figure 10 shows degree distributions of the Initial 
network and its update using the set of 156 correct triplets. Similarly to the 
simple use case, both distributions seem to follow the power law. However, 

the statistical test yielded p-values 5.8 ∗ 10
−6

 and 0.0069 against the power 
law null hypothesis. In contrast with the simple use case, the Initial network is 
now substantially bigger and the incremental update does not change the 
connectivity noticeably (besides the already observed increased degree of 
few well-known components). Finally, the Initial complex network as well as its 

increment are slightly dissortative with the assortativity coefficients −0.16 and 
−0.12, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Degree distribution of the Initial network and its increments for the 
complex plant defence use case. 
 
 

The evaluation of the newly discovered relations reveals that they mostly 
represent cross-talk connection between the SA, JA and ET pathways. While 
exploring the new links (red arcs) in the Incremented network, we have 
observed an interesting pattern related to the discovery of binding relations. 
Most of the 13 new binding relations connect the components that are already 
connected either through activation or inhibition reaction type. The new links 
provide an additional explanation that first these components physically bind 
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and then the activation or inhibition occurs.  
Among the newly discovered links, biologically very interesting is (ros, 

inhibits, npr1). Earlier studies reveal that ROS, more specifically H2O2, and 

SA together work as a self-amplifying system [38, 39]. However, after 

consulting the publication from where the triplet was extracted [40] we have 

found out that the new results in the study of Peleg et al. [41] indicate the 

presence of the negative regulation of NPR1 transport by H2O2. 

In addition, newly discovered triplets that are biologically interesting are 

(myc2, inhibits, b-chi) and (myc2, inhibits, pdf1.2) which were extracted from 

[42]. Both links are extracted from the same sentence: “MYC2 is a negative 

regulator of the JA-responsive pathogen defense genes PDF1.2 and B-CHI.” 

In the Initial network the relation between MYC2 and b-CHI components 

already exists: (myc2, activates, b-chi). It was acquired manually by the 

authors of the network [24]. The discovery of the new link of a contradictory 

relation type indicates necessity of further exploration of the relation between 

MYC2 and b-CHI components. The second link (myc2, inhibits, pdf1.2) is 

also biologically interesting as it represents a cross-talk connection between 

JA and ET pathway where the component of the JA pathway has diminishing 

influence of the product of the ET pathway. 

For the final evaluation of the network structure, one should keep in mind 

that most of the automatically extracted relations can be considered as 

“indirect” and that intermediate molecules participating in the network can be 

discovered by thorough inspection of the corresponding sentences or by 

performing additional wet-lab experiments. 
 
 
Table 4: The summary of triplet extraction from biological texts for the 

complex plant defence network. The initial links originate only from the Initial 

network, while the intersection and new links originate from the Triplet 

network. The intersection links are the common relations of the Initial and the 
Triplet network. The new links represent exclusively new relations 

discovered by the Bio3graph tool. 
 

Reaction types Initial links Intersection links New links 
    

Activation 279 43 73 
    

Inhibition 100 6 18 
    

Binding 48 3 13 
    

Produces 45 0 0 
    

All reactions 472 52 104 
    

 
 

In the case of the simple plant defence network as well as in the case of 
the complex network, the accomplished precision is similar to the precision 
of the published Bio3graph tool [24]. In recent studies several systems for 
automated information extraction have been developed reporting remarkable 
precision and recall results. For example, the Chilibot system achieved a 
precision from 74.4% for inhibitory relations to 79.1% for the general protein-
protein interaction. Suiseki has a recall of 70% with the accuracy around 
80% for the best defined reactions. Nevertheless, most of these systems 
extract the protein-protein interactions from text abstracts or from a filtered 
text corpus, where only sentences with keywords were considered. However, 
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in comparison with abstracts, full-length publications have more complex 
sentence structures. Therefore, when processing full texts both the precision 
and the recall are lower than in abstract-based relation extraction systems. 
The only system which is directly comparable to Bio3graph and incremental 
Bio3graph is BioRAT [20] which was reported to achieve a precision of 
51.25% and a recall of 43.6%. The average precision of incremental version 
of Bio3graph tool is 41.8% for the first use case, which is close to the 
precision of BioRAT. In the case of complex network structure, the precision 
was 39.1%. However, Bio3graph was initially designed to achieve higher 
recall at the cost of lower precision with the aim to extract relations that were 
missed during manual information gathering. While the exact value of recall 
cannot be computed for the presented use cases it is reasonable to expect 
that it should not differ significantly from the recall as reported by Miljkovic et 
al. [24]. 
 
 
4 Conclusion  
 
This paper presents an approach to incremental development of biological 
net-works by extending the existing tool Bio3graph with new components that 
per-form literature retrieval from the PMC Open Access Subset and 
incremental up-grading of networks. The developed literature retrieval 
procedures enable easy access to the freely available articles by integrating 
E-utilities and parsing of XML data. The extended Bio3graph tool provides 
efficient tracking and visualisation of new knowledge obtained from biological 
literature. By applying the triplet extraction incrementally on time-labelled data 
one can follow the development of knowledge about certain biological 
phenomena and discover new relations which can potentially enhance already 
developed models (networks). Note also that according to the user’s 
preferences more than one time point can be defined. For example, if the 
overall goal is to inspect a fine-grained development of the starting model, it is 
recommended to set as many time points as needed so that one batch of 
newly discovered relations does not contain more than a few relations. 
Furthermore, the incremental extension offers detection and inspection of 
transitive relations. 

We have applied the extended Bio3graph method to a time-labelled 
collection of biomedical documents obtained from the PMC database in order 
to incrementally enrich two different networks. The first network has a simple 
structure and is configured from three published structural models. The 
network is enhanced throughout two phases which demonstrate the 
incremental approach. The second network is a recently published complex 
plant defence network. By extending this complex structure the experts have 
detected several interesting links among the newly discovered relations that 
might be subject to further experimental validation, e.g., the link between 
MYC2 and b-CHI components which contradicts previously published results. 

While the presented approach enables automated relation extraction and 
network structure updates, a substantial manual effort is required to validate 
the result and remove false positives. However, automatic information 
extraction from full-text documents is still beneficial as the data to be 
processed by human experts is significantly reduced in size and complexity. 
Some additional manual work (vocabulary construction) is also required when 
the method is applied to a new field of interest but needs to be performed only 
once per domain. 

In biological text mining, one of the challenges is to resolve the ambiguity 
between gene and protein names. They have often identical names and 
unfortunately they are rarely disambiguated by the authors themselves. In our 
work, we have considered the gene and a protein as one biological entity as 
in plants one gene encodes only for one protein. When using the incremental 
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version of Bio3graph tool for other species where one gene encodes several 
proteins, this problem can be resolved by applying one of the methods for 
biomedical term disambiguation, e.g., the method based on machine learning 
and word classification task presented in the study of Al-Mubaid and Chen 
[43]. Moreover, the mutant plants usually bear the name of the gene that was 
knocked-out. In Bio3graph this ambiguity problem is simply resolved by 
filtering out triplets where the noun phrase of a subject or object contains 
words like: mutant, line, etc. 

In the future we plan to include the GENIA sentence splitter [44] which is 
trained on the GENIA corpus

3
 [45] and employs a classification model based 

on maximum entropy modelling. Moreover, we plan to improve the triplet 
extraction by using fast deep parsing instead of chunking, and fine tune the 
rules for triplet extraction and filtering. The current implementation of 
Bio3graph discovers new relations, but does not enable automated discovery 
of new components as it employs a manually constructed vocabulary. To 
further evolve the network structure, new components could be added to the 
vocabulary to find additional relations. We plan to implement named entity 
recognition and automatic discovery of synonyms which will enable 
automated construction of the components vocabulary. 

We expect that the extended version of the Bio3graph tool will assist the 
construction and enhancement of network structures that model other 
biological mechanisms. The results show that publicly available sources of 
biomedical literature, such as the PMC database, offer a good starting point 
for computer-assisted development of plant defence models, and that 
approaches such as the presented incremental method can contribute to the 
discovery of potentially interesting relations. The obtained results show the 
potential of the developed method but also indicate the need for further 
development to improve the accuracy and utility of information extraction. The 
advantage of our incremental version of Bio3graph is its simple reuse as it 
has a form of a repeatable workflow in the Orange4WS. Moreover, by defining 
a different vocabulary, incremental version of Bio3graph can be used to 
extract the network structures of other biological mechanisms. 
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